Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 709: 149803, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552556

RESUMO

Synaptic plasticity is essential for memory encoding and stabilization of neural network activity. Plasticity is impaired in neurodegenerative conditions including Alzheimer disease (AD). A central factor in AD is amyloid precursor protein (APP). Previous studies have suggested APP involvement in synaptic plasticity, but physiological roles of APP are not well understood. Here, we identified combinatorial phosphorylation sites within APP that regulate AMPA receptor trafficking during different forms of synaptic plasticity. Dual phosphorylation sites at threonine-668/serine-675 of APP promoted endocytosis of the GluA2 subunit of AMPA receptors during homeostatic synaptic plasticity. APP was also required for GluA2 internalization during NMDA receptor-dependent long-term depression, albeit via a distinct pair of phosphoresidues at serine-655/threonine-686. These data implicate APP as a central gate for AMPA receptor internalization during distinct forms of plasticity, unlocked by specific combinations of phosphoresidues, and suggest that APP may serve broad functions in learning and memory.


Assuntos
Doença de Alzheimer , Receptores de AMPA , Humanos , Receptores de AMPA/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fosforilação , Plasticidade Neuronal/fisiologia , Doença de Alzheimer/metabolismo , Serina/metabolismo , Treonina/metabolismo , Sinapses/metabolismo
2.
Int J Biochem Cell Biol ; 164: 106475, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778693

RESUMO

Tau has canonically been considered as an axonal protein, but studies have observed tau localization in other subcellular domains of neurons. This relocated tau has been identified in both physiological and pathological conditions, and it is often labeled mislocalized. Furthermore, these forms of tau are referred to as "hyperphosphorylated" without specifying the phosphosites involved. On the contrary, we speculate that tau may have multiple physiological functions in various locations regulated via specific phosphorylation sites, although this picture is obscured by a lack of comprehensive phosphosite analysis. Here, we examine findings in the literature on the subcellular location of tau and potential roles tau has in those regions. We intentionally focus on the site-specific phosphorylated patterns involved in governing these properties, which are not well elucidated. To facilitate understanding of these events, we have begun establishing a comprehensive map of tau phosphorylation signatures. Such efforts may clarify tau's diverse physiological functions beyond the axon as well as promote development of novel therapeutic strategies directed against distinct tau subpopulations.


Assuntos
Microtúbulos , Proteínas tau , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Fosforilação , Neurônios/metabolismo
3.
J Neurochem ; 167(3): 362-375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654026

RESUMO

Synaptogenesis in the brain is highly organized and orchestrated by synaptic cellular adhesion molecules (CAMs) such as N-cadherin and amyloid precursor protein (APP) that contribute to the stabilization and structure of synapses. Although N-cadherin plays an integral role in synapse formation and synaptic plasticity, its function in synapse dismantling is not as well understood. Synapse weakening and loss are prominent features of neurodegenerative diseases, and can also be observed during homeostatic compensation to neuronal hyperexcitation. Previously, we have shown that during homeostatic synaptic plasticity, APP is a target for cleavage triggered by phosphorylation by Polo-like kinase 2 (Plk2). Here, we found that Plk2 directly phosphorylates N-cadherin, and during neuronal hyperexcitation Plk2 promotes N-cadherin proteolytic processing, degradation, and disruption of complexes with APP. We further examined the molecular mechanisms underlying N-cadherin degradation. Loss of N-cadherin adhesive function destabilizes excitatory synapses and promotes their structural dismantling as a prerequisite to eventual synapse elimination. This pathway, which may normally help to homeostatically restrain excitability, could also shed light on the dysregulated synapse loss that occurs in cognitive disorders.

4.
Cell Mol Neurobiol ; 43(2): 697-709, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35643882

RESUMO

The field of homeostatic plasticity continues to advance rapidly, highlighting the importance of stabilizing neuronal activity within functional limits in the context of numerous fundamental processes such as development, learning, and memory. Most homeostatic plasticity studies have been focused on glutamatergic synapses, while the rules that govern homeostatic regulation of other synapse types are less understood. While cholinergic synapses have emerged as a critical component in the etiology of mammalian neurodegenerative disease mechanisms, relatively few studies have been conducted on the homeostatic plasticity of such synapses, particularly in the mammalian nervous system. An exploration of homeostatic mechanisms at the cholinergic synapse may illuminate potential therapeutic targets for disease management and treatment. We will review cholinergic homeostatic plasticity in the mammalian neuromuscular junction, the autonomic nervous system, central synapses, and in relation to pathological conditions including Alzheimer disease and DYT1 dystonia. This work provides a historical context for the field of cholinergic homeostatic regulation by examining common themes, unique features, and outstanding questions associated with these distinct cholinergic synapse types and aims to inform future research in the field.


Assuntos
Doenças Neurodegenerativas , Animais , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Junção Neuromuscular , Colinérgicos , Mamíferos
5.
Cell Mol Neurobiol ; 41(8): 1787-1799, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860154

RESUMO

Septal innervation of basal forebrain cholinergic neurons to the hippocampus is critical for normal learning and memory and is severely degenerated in Alzheimer's disease. To understand the molecular events underlying physiological cholinergic synaptogenesis and remodeling, as well as pathological loss, we developed an optimized primary septal-hippocampal co-culture system. Hippocampal and septal tissue were harvested from embryonic Sprague-Dawley rat brain and cultured together at varying densities, cell ratios, and in the presence of different growth factors. We identified conditions that produced robust septal-hippocampal synapse formation. We used confocal microscopy with primary antibodies and fluorescent ligands to validate that this system was capable of generating developmentally mature cholinergic synapses. Such synapses were comprised of physiological synaptic partners and mimicked the molecular composition of in vivo counterparts. This co-culture system will facilitate the study of the formation, plasticity, and dysfunction of central mammalian cholinergic synapses.


Assuntos
Neurônios Colinérgicos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Septo do Cérebro/citologia , Septo do Cérebro/metabolismo , Sinapses/metabolismo , Animais , Neurônios Colinérgicos/química , Técnicas de Cocultura , Feminino , Hipocampo/química , Gravidez , Ratos , Ratos Sprague-Dawley , Septo do Cérebro/química , Sinapses/química
6.
J Neurosci ; 40(26): 5116-5136, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32439703

RESUMO

Memory disruption in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, particularly at early stages preceding neurodegeneration. In mouse models of AD, there are disruptions to sharp wave ripples (SWRs), hippocampal population events with a critical role in memory consolidation. However, the microcircuitry underlying these disruptions is under-explored. We tested whether a selective reduction in parvalbumin-expressing (PV) inhibitory interneuron activity underlies hyperactivity and SWR disruption. We employed the 5xFAD model of familial AD crossed with mouse lines labeling excitatory pyramidal cells (PCs) and inhibitory PV cells. We observed a 33% increase in frequency, 58% increase in amplitude, and 8% decrease in duration of SWRs in ex vivo slices from male and female three-month 5xFAD mice versus littermate controls. 5xFAD mice of the same age were impaired in a hippocampal-dependent memory task. Concurrent with SWR recordings, we performed calcium imaging, cell-attached, and whole-cell recordings of PC and PV cells within the CA1 region. PCs in 5xFAD mice participated in enlarged ensembles, with superficial PCs (sPCs) having a higher probability of spiking during SWRs. Both deep PCs (dPCs) and sPCs displayed an increased synaptic E/I ratio, suggesting a disinhibitory mechanism. In contrast, we observed a 46% spike rate reduction during SWRs in PV basket cells (PVBCs), while PV bistratified and axo-axonic cells were unimpaired. Excitatory synaptic drive to PVBCs was selectively reduced by 50%, resulting in decreased E/I ratio. Considering prior studies of intrinsic PV cell dysfunction in AD, these findings suggest alterations to the PC-PVBC microcircuit also contribute to impairment.SIGNIFICANCE STATEMENT We demonstrate that a specific subtype of inhibitory neuron, parvalbumin-expressing (PV) basket cells, have selectively reduced activity in a model of Alzheimer's disease (AD) during activity critical for the consolidation of memory. These results identify a potential cellular target for therapeutic intervention to restore aberrant network activity in early amyloid pathology. While PV cells have previously been identified as a potential therapeutic target, this study for the first time recognizes that other PV neuronal subtypes, including bistratified and axo-axonic cells, are spared. These experiments are the first to record synaptic and spiking activity during sharp wave ripple (SWR) events in early amyloid pathology and reveal that a selective decrease in excitatory synaptic drive to PV basket cells (PVBCs) likely underlies reduced function.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia
7.
FASEB J ; 34(5): 6965-6983, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237183

RESUMO

Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Células Piramidais/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Plasticidade Neuronal/fisiologia , Transporte Proteico , Células Piramidais/ultraestrutura , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Receptores de AMPA/metabolismo
8.
J Neurochem ; 153(4): 468-484, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31821553

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+ and are capable of regulating the release of glutamate and γ-aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory-inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed-pregnant Sprague-Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath-applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration-dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that ß4-containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine-mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+ /calmodulin-dependent kinase II (CaMKII) and serine 831 phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network-wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Rede Nervosa/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley
9.
PLoS One ; 14(7): e0219691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306446

RESUMO

Alzheimer disease (AD) is a neurodegenerative disorder characterized by pathological hallmarks of neurofibrillary tangles and amyloid plaques. The plaques are formed by aggregation and accumulation of amyloid ß (Aß), a cleavage fragment of amyloid precursor protein (APP). Enhanced neuronal activity and seizure events are frequently observed in AD, and elevated synaptic activity promotes Aß production. However, the mechanisms that link synaptic hyperactivity to APP processing and AD pathogenesis are not well understood. We previously found that Polo-like kinase 2 (Plk2), a homeostatic repressor of neuronal overexcitation, promotes APP ß-processing in vitro. Here, we report that Plk2 stimulates Aß production in vivo, and that Plk2 levels are elevated in a spatiotemporally regulated manner in brains of AD mouse models and human AD patients. Genetic disruption of Plk2 kinase function reduces plaque deposits and activity-dependent Aß production. Furthermore, pharmacological Plk2 inhibition hinders Aß formation, synapse loss, and memory decline in an AD mouse model. Thus, Plk2 links synaptic overactivity to APP ß-processing, Aß production, and disease-relevant phenotypes in vivo, suggesting that Plk2 may be a potential target for AD therapeutics.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia , Sinapses/metabolismo
10.
Epilepsy Res ; 140: 1-7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227795

RESUMO

Animal models are valuable tools for screening novel therapies for patients who suffer from epilepsy. However, a wide array of models are necessary to cover the diversity of human epilepsies. In humans, neonatal hypoxia (or hypoxia-ischemia) is one of the most common causes of epilepsy early in life. Hypoxia-induced seizures (HS) during the neonatal period can also lead to spontaneous seizures in adulthood. This phenomenon, i.e., early-life hypoxia leading to adult epilepsy - is also seen in experimental models, including rats. However, it is not known which anti-seizure medications are most effective at managing adult epilepsy resulting from neonatal HS. Here, we examined the efficacy of three anti-seizure medications against spontaneous seizures in adult rats with a history of neonatal HS: (1) phenobarbital (PHB), the oldest epilepsy medicine still in use today; (2) levetiracetam (LEV); and (3) tiagabine (TGB). Both LEV and TGB are relatively new anticonvulsant drugs that are ineffective in traditional seizure models, but strikingly effective in other models. We found that PHB and LEV decreased seizures in adult rats with a history of HS, whereas TGB exacerbated seizures. These divergent drug effects indicate that the HS model may be useful for differentiating the clinical efficacy of putative epilepsy therapies.


Assuntos
Anticonvulsivantes/farmacologia , Hipóxia/complicações , Levetiracetam/farmacologia , Convulsões/tratamento farmacológico , Convulsões/etiologia , Tiagabina/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Masculino , Fenobarbital/farmacologia , Proibitinas , Ratos Long-Evans , Convulsões/fisiopatologia
11.
Epilepsia ; 59(1): 106-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29114861

RESUMO

OBJECTIVE: Homeostatic synaptic plasticity (HSP) serves as a gain control mechanism at central nervous system (CNS) synapses, including those between the dentate gyrus (DG) and CA3. Improper circuit control of DG-CA3 synapses is hypothesized to underlie epileptogenesis. Here, we sought to (1) identify compounds that preferentially modulate DG-CA3 synapses in primary neuronal culture and (2) determine if these compounds would delay or prevent epileptogenesis in vivo. METHODS: We previously developed and validated an in vitro assay to visualize the behavior of DG-CA3 synapses and predict functional changes. We used this "synapse-on-chip" assay (quantification of synapse size, number, and type using immunocytochemical markers) to dissect the mechanisms of HSP at DG-CA3 synapses. Using chemogenetic constructs and pharmacological agents we determined the signaling cascades necessary for gain control at DG-CA3 synapses. Finally, we tested the implicated cascades (using kappa opioid receptor (OR) agonists and antagonists) in two models of epileptogenesis: electrical amygdala kindling in the mouse and chemical (pentylenetetrazole) kindling in the rat. RESULTS: In vitro, synapses between DG mossy fibers (MFs) and CA3 neurons are the primary homeostatic responders during sustained periods of activity change. Kappa OR signaling is both necessary and sufficient for the homeostatic elaboration of DG-CA3 synapses, induced by presynaptic DG activity levels. Blocking kappa OR signaling in vivo attenuates the development of seizures in both mouse and rat models of epilepsy. SIGNIFICANCE: This study elucidates mechanisms by which synapses between DG granule cells and CA3 pyramidal neurons undergo activity-dependent homeostatic compensation, via OR signaling in vitro. Modulation of kappa OR signaling in vivo alters seizure progression, suggesting that breakdown of homeostatic closed-loop control at DG-CA3 synapses contributes to seizures, and that targeting endogenous homeostatic mechanisms at DG-CA3 synapses may prove useful in combating epileptogenesis.


Assuntos
Epilepsia/metabolismo , Epilepsia/patologia , Hipocampo/patologia , Neurônios/metabolismo , Receptores Opioides kappa/metabolismo , Sinapses/fisiologia , Animais , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Convulsivantes/toxicidade , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Epilepsia/etiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/farmacologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/metabolismo , Sinapses/efeitos dos fármacos , Sinaptofisina/metabolismo , Tetrodotoxina/farmacologia , Transfecção , Proteínas Supressoras de Tumor/metabolismo
13.
Neuropharmacology ; 117: 387-400, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257888

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive deficits. Amyloidogenic processing of amyloid precursor protein (APP) produces amyloid ß (Aß), the major component of hallmark AD plaques. Synaptic activity stimulates APP cleavage, whereas APP promotes excitatory synaptic transmission, suggesting APP participates in neuronal homeostasis. However, mechanisms linking synaptic activity to APP processing are unclear. Here we show that Polo-like kinase 2 (Plk2), an activity-inducible regulator of homeostatic plasticity, directly binds and phosphorylates threonine-668 and serine-675 of APP in vitro and associates with APP in vivo. Plk2 accelerates APP amyloidogenic cleavage by ß-secretase at synapses and is required for neuronal overactivity-stimulated Aß secretion. These findings implicate Plk2 as a novel mediator of activity-dependent APP amyloidogenic processing.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células COS , Chlorocebus aethiops , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Sinapses/metabolismo
14.
J Alzheimers Dis ; 51(2): 591-604, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890742

RESUMO

BACKGROUND: The accumulation of amyloid-ß (Aß) leads to the loss of dendritic spines and synapses, which is hypothesized to cause cognitive impairments in Alzheimer's disease (AD) patients. In our previous study, we demonstrated that a novel mercaptoacetamide-based class II histone deacetylase inhibitor (HDACI), known as W2, decreased Aß levels and improved learning and memory in mice. However, the underlying mechanism of this effect is unknown. OBJECTIVE: Because dendritic spine formation is associated with cognitive performance, here we investigated whether HDACI W2 regulates dendritic spine density and its molecular mechanism of action. METHODS: To examine the effect of HDACI W2 on dendritic spine density, we conducted morphological analysis of dendritic spines using GFP transfection and Golgi staining. In addition, to determine the molecular mechanism of W2 effects on spines, we measured the levels of mRNAs and proteins involved in the Ras signaling pathway using quantitative real-time PCR, immunocytochemistry, and western analysis. RESULTS: We found that HDACI W2 altered dendritic spine density and morphology in vitro and in vivo. Additionally, W2 increased the mRNA or protein levels of Ras GRF1 and phospho-ERK. Moreover, knockdown of RasGRF1 and inhibition of ERK activity prevented the W2-mediated spinogenesis in primary hippocampal neurons. CONCLUSION: Our Class II-selective HDACI W2 promotes the formation and growth of dendritic spines in a RasGRF1 and ERK dependent manner in primary hippocampal neurons.


Assuntos
Acetamidas/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Tioglicolatos/farmacologia , ras-GRF1/metabolismo , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Espinhas Dendríticas/enzimologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transfecção , ras-GRF1/genética
15.
Biochim Biophys Acta ; 1862(2): 284-95, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26675527

RESUMO

Our recent study demonstrated that an amyloid-ß binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-ß binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo , ras-GRF1/metabolismo , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Etilenoglicol/química , Etilenoglicol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo
16.
Neurobiol Learn Mem ; 125: 265-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26477834

RESUMO

Hebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity. Metaplasticity has been functionally observed but the molecular basis is not well understood. Here, we report that stimulation which induces LTP recruits GluN2B-lacking GluN1/GluN3 NMDA receptors (NMDARs) to excitatory synapses of hippocampal pyramidal neurons. These unconventional receptors may compete against conventional GluN1/GluN2 NMDARs to favor synaptic depotentiation in response to subsequent "LTP-inducing" stimulation. These results implicate glycinergic GluN1/GluN3 NMDAR as molecular brakes on excessive synaptic strengthening, suggesting a role for these receptors in the brain that has previously been elusive.


Assuntos
Hipocampo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Ratos
17.
Rev Neurosci ; 25(2): 223-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24566362

RESUMO

Experience-dependent remodeling of synaptic structure and function underlies information storage in the mammalian central nervous system. Although accumulating evidence suggests synergistic roles of long-term depression (LTD) and long-term potentiation (LTP) in cerebellar motor learning, their structural correlates and operational mechanisms have not been clearly addressed. A recent three-dimensional electron microscopic study provides insight for a potential complementary interplay between LTP and LTD in local dendritic segments of Purkinje cells of motor skill-trained animals. Complex motor skill training induced strengthening of a subset of parallel fiber synapses onto Purkinje cells by forming multiple-synapse boutons (MSBs) contacting spine pairs arising from the same dendrite, whereas MSB-neighboring synapses were weakened by reducing the size of the postsynaptic density. Here, we discuss these orchestrated structural modifications of neighboring synapses that may sharpen synaptic weight contrast in local dendritic segments, leading to enhanced signal-to-noise ratio for optimal motor skill retention.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Dendritos/ultraestrutura , Humanos , Imageamento Tridimensional , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Sinapses/ultraestrutura
18.
Exp Neurol ; 252: 105-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316432

RESUMO

We recently reported that the tetra(ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, acts as an amyloid-binding small molecule that promotes dendritic spine density and cognitive function in wild-type mice. This raised the possibility that BTA-EG4 may benefit the functional decline seen in Alzheimer's disease (AD). In the present study, we directly tested whether BTA-EG4 improves dendritic spine density and cognitive function in a well-established mouse model of AD carrying mutations in APP, PS1 and tau (APPswe;PS1M146V;tauP301L, 3xTg AD mice). We found that daily injections of BTA-EG4 for 2 weeks improved dendritic spine density and cognitive function of 3xTg AD mice in an age-dependent manner. Specifically, BTA-EG4 promoted both dendritic spine density and morphology alterations in cortical layers II/III and in the hippocampus at 6-10 months of age compared to vehicle-injected mice. However, at 13-16 months of age, only cortical spine density was improved without changes in spine morphology. The changes in dendritic spine density correlated with Ras activity, such that 6-10 month old BTA-EG4 injected 3xTg AD mice had increased Ras activity in the cortex and hippocampus, while 13-16 month old mice only trended toward an increase in Ras activity in the cortex. Finally, BTA-EG4 injected 3xTg AD mice at 6-10 months of age showed improved learning and memory; however, only minimal improvement was observed at 13-16 months of age. This behavioral improvement corresponds to a decrease in soluble Aß 40 levels. Taken together, these findings suggest that BTA-EG4 may be beneficial in ameliorating the synaptic loss seen in early AD.


Assuntos
Doença de Alzheimer/complicações , Compostos de Anilina/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Espinhas Dendríticas/efeitos dos fármacos , Hipocampo/patologia , Fatores Etários , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Compostos de Anilina/farmacologia , Animais , Modelos Animais de Doenças , Hipocampo/ultraestrutura , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Proteínas tau/genética
19.
Biochem Biophys Res Commun ; 439(4): 464-70, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24012668

RESUMO

Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer's Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling.


Assuntos
Anti-Hipertensivos/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Receptores de AMPA/metabolismo , Tetrazóis/farmacologia , Valina/análogos & derivados , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Fosforilação , Transporte Proteico , Ratos , Ratos Wistar , Sinaptofisina/metabolismo , Valina/farmacologia , Valsartana
20.
J Neurosci ; 33(23): 9794-9, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739975

RESUMO

Motor skill training promotes the formation of parallel fiber multiple-synapse boutons (MSBs) contacting dendritic spine pairs of Purkinje cells in the rat cerebellum. However, the dendritic origin of such spine pairs is unknown. Here, we used three-dimensional electron microscopy reconstruction of synaptic connectivity to demonstrate that motor skill training selectively induced MSBs contacting two spines arising from the same dendrite, consistent with strengthening of local synaptic efficacy. However, excitatory synapses near MSBs were smaller in motor-trained animals, suggesting compensatory depression of MSB-neighbor synapses. Concerted strengthening and weakening of adjacent synapses may enhance synaptic weight differences for information encoding while maintaining stable overall activity levels within local dendritic segments.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...